Треугольник имеет три угла или вершины, и три стороны, которые являются прямыми отрезками.

Равносторонним треугольником является треугольник, который имеет равную длину всех трех сторон.

Если две стороны треугольника и два прилегающих к ним угла равны между собой — такой треугольник называется равнобедренным

Площадь треугольника через основание и высоту: a×h/2

Введите длину основания и высоты =
Площадь треугольника =

Периметр треугольника: (a + b + c)

Введите длину сторон =
Периметр треугольника =

Площадь равностороннего треугольника: (√(3)/4)×a²

Введите длину стороны =
Площадь равностороннего треугольника=

Площадь равнобедренного треугольника(2 стороны и угол): ½×a×b×SinC

Введите длину стороны и основания =
Угол =
Площадь треугольника=

Формулы площади треугольника:

  • Площадь треугольника = a * h/2
  • Периметр треугольника = a + b + c
  • Площадь равностороннего треугольника = (√(3) / 4) * a²
  • Площадь равнобедренного треугольника = ½ * a * b * SinC

где,

  • h — высота треугольника,
  • a, b, c = стороны треугольника

Примеры :

Задача 1: Найдите площадь треугольника у которого высота = 3, а длина основания = 4.
Шаг 1: Найдем площадь.
Площадь = h * b/2 = 3 * 4/2 = 12/2 = 6.

Задача 2: Найдите периметр треугольника, если известна длина его трех сторон = 1, 2, 3.

Шаг 1: Найдем периметр.
Периметр = a + b + c = 1 + 2 + 3 = 6.

Задача 3: Найдите площадь равностороннего треугольника, если длина его стороны равна 3.

Шаг 1: Найдем площадь.
Площадь = (√(3) / 4) * a² = (1.73 / 4) * 3² = 0.43 * 9 = 3.87.

Задача 4: Найдите площадь равнобедренного треугольника если сторона его равна 3, основание = 4 и угол между ними 28.

Шаг 1: Найдем площадь.
Площадь = ½ * a * b * SinC = 0.5 * 3 * 4 * Sin(28) = 6 * 0.27 = 1.62.

Приведенные выше примеры показывают, как вычислить площадь и периметр треугольника, равностороннего треугольника,
равнобедренного треугольника вручную.

0 комментариев

  • Приветствуем гость