Правильный многоугольник
Правильный многоугольник - плоская замкнутая ломаная, состоящая из прямых отрезков. Все стороны и углы правильного многоугольника равны между собой.
Калькулятор расчета площади и периметра правильного многоугольника.
Расчет площади по длине стороны:
Площадь Многоугольника = ((side)² * N) / (4Tan(π / N))
Периметр Многоугольника = N * (side)
Расчет площади по радиусу описанной окружности :
Площадь Многоугольника = ½ * R² * Sin(2π / N)
Расчет площади по радиусу вписанного круга :
Площадь Многоугольника = A² * N * Tan(π / N)
где, A = R * Cos(π / N)
По радиусу вписанного круга и длине стороны :
Площадь Многоугольника = (A * P) / 2
где A = сторона / (2 * Tan(π / N))
где,
- N = Количество сторон,
- A = Радиус вписанного круга,
- R = Радиус описанной окрудности,
- P = Периметр
Примеры:
Задача 1: Найдите площадь и периметр многоугольника, если длина стороны = 2 и количество сторон = 4.
Шаг 1: Найдем площадь.
Площадь = ((длина стороны)² * N) / (4Tan(π / N))
= ((2)² * 4) / (4 * Tan(3.14 / 4))
= (4 * 4) / 4 * Tan(0.785)
= 16 / 4 * 0.999
= 16 / 3.996
Площадь = 4.
Шаг 2: Найдем периметр.
Периметр = (N * (длина стороны) = 4 * 2 = 8
Задача 2: Найдите площадь и периметр многоугольника, если радиус описанной окружности = 2, количество сторон многоугольника = 5.
Шаг 1: Найдем площадь.
Площадь = ½ * R² * Sin(2π / N)
= (0.5) * 2² * Sin(2 * 3.14 / 5)
= 0.5 * 4 * Sin(6.28 / 5)
= 2 * Sin(1.26)
= 2 * 0.95
Площадь = 1.9.
Задача 3:Найдите площадь многоугольника с радиусом описанной окружности равному 2 и количеству сторон 5, используя радиус вписанного круга.
Шаг 1: Найдем радиус вписанного круга.
А = R * Cos(π / N)
= 2 * Cos(3.14 / 5)
= 2 * Cos(0.63)
= 2 * 0.81
Апофема (радиус вписанного круга) = 1.62.
Шаг 2: Найдем площадь.
Площадь = A² * N * Tan(π / N)
= 1.62² * 5 * Tan(3.14 / 5)
= 2.62 * 5 * Tan(0.63)
= 13.1 * 0.73
Площадь = 9.5.
Задача 4: Найти площадь многоугольника используя Апофему (радиус вписанного круга), если длина стороны равна 2, а количество сторон 5.
Step 1: Найдем Апофему.
Апофема = длина стороны / (2 * Tan(π / N))
= 2 / (2 * Tan(π / 4))
= 2 / (2 * Tan(0.785))
= 2 / (2 * 0.999)
= 2 / 1.998
Апофема (А) = 1.
Шаг 2: Найдем периметр.
Периметр (P) = (N * (длина стороны) = 4 * 2 = 8
Шаг 3: Найдем площадь.
Площадь = (A * P) / 2
= (1 * 8) / 2
= 8 / 2
Площадь = 4.
Приведенные выше примеры показывают, как вычислить площадь и периметр многоугольника вручную.