Перейти к содержанию

Длина медианы треугольника

Онлайн калькулятор расчета длины медианы треугольника при условии, что известны координаты его вершин. Нахождение длины трех медиан треугольника

Медиана треугольника (лат. mediāna — средняя) ― отрезок, соединяющий вершину треугольника с серединой противоположной стороны, а также прямая, содержащая этот отрезок.

Каждый треугольник имеет ровно три медианы, по одной из каждой вершины, и все они пересекаются друг с другом в центре треугольника. В случае равнобедренного и равностороннего треугольников, медиана делит пополам любой угол в вершине у которого две смежные стороны равны.

Калькулятор длины медианы треугольника

Input Fields
ax
ay
bx
by
cx
cy
Если включено, результат будет автоматически обновляться при изменении любого значения.

Формула расчета длины медианы

Formula
$$m_a = \frac{1}{2} \sqrt{2b^2 + 2c^2 — a^2}$$

где,

  • a,b,c — Длина сторон треугольника.

Пример расчета медиан:

Даны точки A( 1 , 5 ), B( 8 , 9 ) и C( 5 , 6 ). Найдите медианы треугольника.

Получаем:

A( 1 , 5 ) B( 8 , 9 ) C( 5 , 6 )

Решение:

Шаг 1:

Найдем длину сторон a,b,c используя формулу

d = √((x2 — x1)2 + (y2 — y1)2)

Найдем длину стороны A между точками B( 8 , 9 ) and C( 5 , 6 )

a = √((5 — 8)2 + (6 — 9)2 )= 4.242

Найдем длину стороны B между точками C( 5 , 6 ) и A( 1 , 5 )

b = √((1 — 5)2 + (5 — 6)2) = 4.123

Найдем длину стороны C между точками A( 1 , 5 ) и B( 8 , 9 )

c = √((8 — 1)2 + (9 — 5)2) = 8.062

Шаг 2:

Полученные значения a,b,c применяем в формулы

ma = (1/2) √2c2 + 2b2 — a2

mb = (1/2) √(2c2 + 2a2 — b2 )

mc = (1/2) √(2a2 + 2b2 — c2 )

  • ma = (1/2)√(2(8.062)2 + 2(4.123)2 — 4.2422 )= 6.042
  • mb = (1/2)√(2(8.062)2 + 2(4.242)2 — 4.1232 )= 6.103
  • mc = (1/2)√2(4.242)2 + 2(4.123)2 — 8.0622 = 1.118

Свойства Медиан Треугольника

  • Медианы треугольника пересекаются в одной точке, которая называется центроидом или центром тяжести треугольника, и делятся этой точкой на две части в отношении 2:1, считая от вершины.
  • Треугольник делится тремя медианами на шесть равновеликих треугольников.
  • Большей стороне треугольника соответствует меньшая медиана.
  • В прямоугольном треугольнике медиана, проведённая из вершины прямого угла, равняется половине гипотенузы.
  • Из отрезков, образующих медианы, можно составить треугольник, то есть их длины удовлетворяют неравенству треугольника.
Предыдущий
Прямая линия

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Один комментарий к “Длина медианы треугольника

  1. Максим:

    Шикарный сайт. Понятное объяснение