Окружность в треугольнике
В каждый треугольник можно вписать окружность, притом только одну.
Центр вписанной окружности называется инцентром, он равноудалён от всех сторон и является точкой пересечения биссектрис треугольника.
Пример
В приведенном ниже примере, O является центров окружности.
Метод расчета центра окружности вписанного в треугольник
Даны точки вершин треугольника A(5,7), B(6,6) и C(2,-2). Итак, нам известны координаты точек вершин треугольника x1,y1, x2,y2 и x3,y3.
Для нахождения точки центра вписанной окружности необходимо найти уравнение биссектрисы.
Шаг 1 :
Давайте рассчитаем средние точки всех сторон треугольника AB, BC и CA заданных координатами x и y
- Средняя точка стороны = x1+x2/2, y1+y2/2
- Средняя точка AB = 5+6/2, 7+6/2 = (11/2, 13/2)
- Средняя точка BC = 6+2/2, 6-2/2 = (4, 2)
- Средняя точка CA = 2+5/2, -2+7/2 = (7/2, 5/2)
Шаг 2 :
Далее, найдем углы сторон AB, BC и CA используя формулу y2-y1/x2-x1. Пожалуйста, обратите внимание, что угол обозначается буквой ‘m’.
- Угол AB (m) = 6-7/6-5 = -1.
- Угол BC (m) = -2-6/2-6 = 2.
- Угол CA (m) = 7+2/5-2 = 3.
Шаг 3 :
Теперь, давайте вычислить угол биссектрисы сторон AB, BC и CA.
- Угол биссектрисы = -1/угол линии (стороны).
- Угол биссектрисы стороны AB = -1/-1 = 1
- Угол биссектрисы стороны BC = -1/2
- Угол биссектрисы стороны CA = -1/3
Шаг 4 :
После того, как мы находим угол перпендикулярных линий, мы должны найти уравнение перпендикуляра, биссектрис с углом и серединой. Уравнение перпендикуляра АВ с серединами (11/2, 13/2) и углом 1.
Уравнение центра окружности y-y1 = m(x-x1)
y-13/2 = 1(x-11/2)
Упростив, мы получим уравнение -x + y = 1
Кроме того, мы должны найти уравнение перпендикуляра, биссектрис линий BE и CF.
Для BC с средней точкой (4,2) и углом -1/2 y-2 = -1/2(x-4)
Упростив, мы получим уравнение x + 2y = 8
Для CA с средней точкой (7/2,5/2) и углом -1/3 y-5/2 = -1/3(x-7/2)
Упростив, мы получим уравнение x + 3y = 11
Шаг 5 :
Найдем значения x и y решив любые 2 из указанных 3 уравнений.
В этом примере, значение x и y равны (2,3) которые являются координатами центра (o) вписанной окружности в треугольник.