Ортоцентр треугольника
Ортоцентр — точка пересечения высот треугольника или их продолжений. Традиционно обозначается латинской буквой H. В зависимости от вида треугольника ортоцентр может находиться внутри треугольника (в остроугольных), вне его (в тупоугольных) или совпадать с вершиной (в прямоугольных — совпадает с вершиной при прямом угле).
Пример
В приведенном ниже примере, O это ортоцентр..
Метод расчета ортоцентра треугольника
Пускай даны точки треугольника A(4,3), B(0,5) и C(3,-6).
Шаг 1
Найдем наклоны сторон AB, BC и CA используя формулу <strong>y2-y1/x2-x1. Наклон обозначим 'm'.
- Наклон AB (m) = 5-3/0-4 = -1/2.
- Наклон BC (m) = -6-5/3-0 = -11/3.
- Наклон CA (m) = 3+6/4-3 = 9.
Шаг 2
Теперь, давайте вычислим наклон высоты AD, BE и CF который перпендикулярен сторонам BC, CA и AB соответственно. Наклон высоты = -1/наклон противоположной стороны треугольника.
- Наклон AD = -1/наклон BC = 3/11.
- Наклон BE = -1/наклон CA = -1/9.
- Наклон CF = -1/наклон AB = 2.
Шаг 3
После того, как мы нашли наклон перпендикуляров, мы должны найти уравнение линий AD, BE и CF. Давайте найдем уравнение линии AD с точкой (4,3) и наклоном 3/11.
Формула, для нахождения уравнения ортоцентра треугольника = y-y1 = m(x-x1) y-3 = 3/11(x-4)
1) Упростив выше приведенное уравнение, мы получим 3x-11y = -21
Кроме того, мы должны найти уравнение линий BE и CF. Уравнение для линии BE с точкой (0,5) и наклоном -1/9 = y-5 = -1/9(x-0)
2) Упростив выше приведенное уравнение, мы получим x + 9y = 45
Уравнение для линии CF с точкой (3,-6) и наклоном 2 = y+6 = 2(x-3)
3)Упростив выше приведенное уравнение, мы получим 2x - y = 12
Шаг 4
Найдем значение x и y решив 2 любых из 3 уравнений.
В этом примере, значение x и y (8.05263, 4.10526) которые являются координатами Ортоцентра (o).